Extensions 1→N→G→Q→1 with N=C2 and Q=C6.C42

Direct product G=N×Q with N=C2 and Q=C6.C42
dρLabelID
C2×C6.C42192C2xC6.C4^2192,767


Non-split extensions G=N.Q with N=C2 and Q=C6.C42
extensionφ:Q→Aut NdρLabelID
C2.1(C6.C42) = (C2×C12)⋊3C8central extension (φ=1)192C2.1(C6.C4^2)192,83
C2.2(C6.C42) = (C2×C24)⋊5C4central extension (φ=1)192C2.2(C6.C4^2)192,109
C2.3(C6.C42) = C12.8C42central stem extension (φ=1)48C2.3(C6.C4^2)192,82
C2.4(C6.C42) = C24.12D6central stem extension (φ=1)48C2.4(C6.C4^2)192,85
C2.5(C6.C42) = C24.13D6central stem extension (φ=1)48C2.5(C6.C4^2)192,86
C2.6(C6.C42) = C12.C42central stem extension (φ=1)192C2.6(C6.C4^2)192,88
C2.7(C6.C42) = C12.(C4⋊C4)central stem extension (φ=1)96C2.7(C6.C4^2)192,89
C2.8(C6.C42) = C423Dic3central stem extension (φ=1)484C2.8(C6.C4^2)192,90
C2.9(C6.C42) = C12.2C42central stem extension (φ=1)48C2.9(C6.C4^2)192,91
C2.10(C6.C42) = (C2×C12).Q8central stem extension (φ=1)484C2.10(C6.C4^2)192,92
C2.11(C6.C42) = C12.9C42central stem extension (φ=1)192C2.11(C6.C4^2)192,110
C2.12(C6.C42) = C12.10C42central stem extension (φ=1)96C2.12(C6.C4^2)192,111
C2.13(C6.C42) = M4(2)⋊Dic3central stem extension (φ=1)96C2.13(C6.C4^2)192,113
C2.14(C6.C42) = C12.3C42central stem extension (φ=1)48C2.14(C6.C4^2)192,114
C2.15(C6.C42) = (C2×C24)⋊C4central stem extension (φ=1)484C2.15(C6.C4^2)192,115
C2.16(C6.C42) = C12.20C42central stem extension (φ=1)484C2.16(C6.C4^2)192,116
C2.17(C6.C42) = C12.4C42central stem extension (φ=1)96C2.17(C6.C4^2)192,117
C2.18(C6.C42) = M4(2)⋊4Dic3central stem extension (φ=1)484C2.18(C6.C4^2)192,118
C2.19(C6.C42) = C12.21C42central stem extension (φ=1)484C2.19(C6.C4^2)192,119

׿
×
𝔽